作为一无名无私奉献的教育工作者,往往需要进行说课稿编写工作,借助说课稿可以让教学工作更科学化。那要怎么写好说课稿呢?以下是小编为大家整理的八年级数学说课稿3篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
一、说教材
首先谈谈我对教材的理解,《菱形》是人教版初中数学八年级下册第十八章18。2。2的内容,“菱形”是继“四边形”、“平行四边形”和“矩形”之后的一个学习内容,它是在学生掌握了平行四边形的性质与判定,又学习了特殊的平行四边形——矩形,具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习正方形等知识的基础,起着承前启后的作用。四边形既是平面几何中的基本图形,也是平面几何研究的主要对象,因此学好四边形的内容,尤其是特殊的四边形,对学生来说,无论是进一步学习还是实际应用都是很重要的。同时通过探索和证明菱形的特殊性质可以让学生体会证明的必要性并进一步丰富对图形的认识和感受。
二、说学情
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
知道并且会用菱形的定义和性质来进行有关的论证和计算。
(二)过程与方法
经历探索菱形性质的过程,通过操作发现特征,进一步发展合情推理能力。通过菱形与平行四边形关系的研究,进一步加深对“一般与特殊”的认识。
(三)情感态度价值观
在探究菱形性质的过程中,享受成功的喜悦,提高学习数学的兴趣。体会菱形的图形美,感受数学与生活的密切关系。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:菱形性质的探究。本节课的教学难点是:菱形性质的探究和应用。
五、说教法和学法
菱形是特殊的平行四边形,这节课教学时注重学生的探索过程,让学生动手操作、观察、猜测、验证,进而获得知识,培养主动探究的能力。教学方法针对本节课的特点,我采用 “创设情境——观察探索——总结归纳——知识运用”为主线的教学模式,动手观察分析讨论相结合的方法。
“授人以鱼,不如授人以渔”,本节课的教学中,要帮助学生学会运用观察、分析、比较、归纳、概括等方法,使传授知识与培养能力融为一体,在教师的指导、提示启发下,学生尝试动手操作,提高了学生的实践操作水平,培养了学生动手能力,养成勤动手,勤钻研的习惯。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
通过PPT展示生活中的菱形实例(可活动的衣帽架、收缩门、防护栏等),提问是什么图形,由已知的平行四边形引入新课。
用这些来源于生活的美丽图片吸引学生的注意力,激发他们的好奇心,诱发学生对新知识的需求。
(二)新知探索
利用制作好的平行四边行教具,将平行四边形的一条边平移到一个固定的位置后,让学生观察图形,引导学生观察教具的变化情况,引出菱形的定义(板书定义):
定义:有一组邻边相等的平行四边形叫做菱形。(板书)
【设计意图】利用自制教具,有较好的直观性和可操作性,让学生更容易理解菱形的定义,同时加强了与平行四边形定义的对比性。接下来教师用多媒体展示菱形的动画制作过程。
出示问题
问题1:菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?
问题2:你能看出图中有哪些相等的线段和角吗?
总结学生回答得到菱形是轴对称图形,它的对角线所在的直线就是它的对称轴。
以及菱形的性质:
(1)菱形的四条边都相等。
(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
并进一步追问:这还只是我们直观折纸得出来的,那么如何证明它们呢?
出示求证:
(1)菱形的四条边都相等。
(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
让学生小组讨论进行证明,并请学生进行板演。
【设计意图】通过动手操作,经历探究对图形的对折,即对轴对称图形的再认识,感受动手实验的乐趣,培养猜想的意识,感受直观操作得出猜想的便捷性,培养学生的观察、实验、猜想等合情推理能力。
(三)课堂练习
接下来是巩固提高环节。
例1:菱形具有而平行四边形不具有性质是( )。
A。对角相等 B。对角线互相平分
C。对边相等 D。对角线互相垂直
例2:这是一个可以活动的菱形衣架,它的边长为16cm,如果墙上钉子间的距离AB=BC=16cm,
则图中的∠1=________。
(四)小结作业
提问:今天有什么收获?
引导学生回顾:菱形的定理与性质。
课后作业:
思考如何求菱形面积。
尊敬的各位评委、各位老师:
大家好!今天我说课的题目是《整式的乘法》,下面我就教材、教法与学法指导、教学设计和教学反思四个方面来向大家介绍一下我对本节课的理解与设计。
一、说教材:
1、教材的地位与作用:本节课是学生在学习了单项式乘以单项式、单项式乘以多项式之后安排的内容,既是单项式与多项式相乘的应用与推广,又为今后学习乘法公式作准备。同时,还可以激发学生对数学问题中蕴含的内在规律进行探索的兴趣和培养学生知识迁移的能力;其得出的过程涉及数形结合,整体代换等重要的数学思想。因此,它在整个初中阶段“数与式”的学习中占有重要地位。
2、教学目标:根据教材内容和学生实际情况,我确定了三个教学目标:
(1)知识与能力:通过自己的探索,用几何和代数两种方法得出多项式与多项式的乘法法则;
(2)过程与方法:在学生探究的`过程中培养学生的思维能力及分析和解决问题的能力,体会数形结合的思想和整体代换的思想;(3)通过数学活动,让学生对数学产生好奇心和求知欲,从而体会到探索与创造的乐趣。
3、教学重难点:多项式乘以多项式法则的推导过程以及法则的归纳和应用。
二、说教法和学法指导:
为了充分调动学生的参与意识,更好地落实各项目标,本节课以学生的数学活动为主线,以让学生参与为本课的核心,以自主、合作、探究、实践为学生的主要学习方式,在此基础上,我采用了如下的教学方法:尝试法、实践法、讨论法、发现法,让学生全员参与,全员活动,让学生和老师、学生和学生之间互动,特别是让学生展示、点评、质疑,充分调动了学生的积极性,发挥学生的潜能。
三、说教学设计:
本节课的主要教学过程设计了“导学达标——探究释疑——拓展延伸——内化迁移”四个基本环节。
1、导学达标:
在这个环节首先检查了学生的预习案完成情况,针对预习中存在的问题进行点拨。然后由一个实际问题引入课题,激发学生兴趣,最后再解读本课的学习目标、重难点,让学生带着目标和问题展开本节课的学习。
2、探究释疑:
这一环节一共设计了两个探究活动。
第一个探究活动让学生进行了拼图游戏,通过比较所表示的拼出的大长方形面积,从而发现多项式乘以多项式的法则,然后和预习案中用代数方法所得出的结论进行比较。此时,教师引导学生进一步认识到多项式乘以多项式本质上与单项式乘以多项式一样都是乘法分配律的应用,从而突破了难点,进而让学生体会到转化以及数形结合的思想。
在得出多项式乘法的法则后,我让学生试着用文字表述它,学生的叙述开始不一定完善,在此教师要帮助学生认识到法则的本质,并最终得出多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.
接下来我设计了一道例题,例题是课本的题目,其目的是熟悉、理解法则。完成例1时,教师引导学生严格按照法则来做,并认真板书,规范了学生的解题过程,起到了示范作用。在完成例题之后,为了让学生检验自己对法则的理解和掌握程度
一、设计思想:
数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。
处理好教与学的关系。教师
既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动 。
根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。
网络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评价-巩固练习-总结提高
二、背景分析:
(一)学情分析:
内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》
学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。
本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。
(二)内容分析:
本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。
通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透类比转化思想。
(三)教学方式:自学导读—同伴互助—精讲精练
(四)教学媒体:Midea---Class纯软多媒体教学网 几何画板
三、教学目标:
知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。
过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。
情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验,树立学好数学的自信心。
教学重点:解分式方程的基本思路和解法。
教学难点:理解分式方程可能产生增根的原因。
设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师
好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。
四、板书设计:
a不是分式方程的解
(二)学习方法:类比与转化
教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。
五、教学过程:
活动1:创设情境,列出方程
设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美-激励启迪。
设计说明:通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。
活动2:总结定义,探究解法
使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。
教学思考:再一次体现了对全章进行整体设计的好处,在学习16.1分式和16.2分式的运算时,几乎每一节课都运用类比的思想-分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。在利用媒体技术拓展学习内容时要遵循以下原则:一、拓展内容要与所学内容有有机联系。二、拓展内容要符合学生实际认知水平,不要任意拔高。三、拓展内容要适量,不要信息过载。
标签:八年级,说课稿,数学