想象一下一长条卫生纸,把它首尾相连,不要粘起来,就会发现原来的一面与其反面相连。对于中小学生来说,多制作几次麦比乌斯圈有助于理解。 麦比乌斯圈
编辑本段故事
数学上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边界的纸圈儿呢?
有什么用呢? 定义楼上说的差不多,至于意义,最近我们学微积分的时候无限循环,立交桥和天桥地下通道就是用这个原理的
麦比乌斯圈(Möbius strip, Möbius band)是一种单侧、不可定向的曲面。因A.F.麦比乌斯(August Ferdinand Möbius, 1790-1868)发现而得名。将一个长方形纸条ABCD的一端AB固定,另一端DC扭转半周后,把AB和CD粘合在一起 ,得到的曲面就是麦比乌斯圈,也称麦比乌斯带。
麦比乌斯环:
公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为"莫比乌斯带"。(也就是说,它的曲面只有一个)也称麦比乌斯环。
百度百科里有 解释的很好 还有图解
标签:麦比,乌斯